Полный текст
Ключевые слова: argon plasma, ascomycetes., fungi, microwave plasma, saccharomycetes, yeast cells, аргоновая плазма, аскомицеты., грибы, дрожжевые клетки, сахаромицеты, СВЧ-плазма
Аннотация
The aim of this work is to study the effect of non-thermal (low-temperature, cold) argon plasma on the inactivation of a traditional model organism – Saccharomyces cerevisiae. To generate non-thermal argon plasma, a source of nonequilibrium plasma based on a cold plasma jet of an electrodeless microwave discharge at atmospheric pressure was developed in the form of an experimental setup. A series of experiments were carried out to select the optimal parameters for yeast cell inactivation. The results of the study showed the antiyeast activity of non-thermal plasma for S. cerevisiae when acting on baker’s yeast cells seeded superficially on a dense nutrient medium (solid lawn). On the 1st day of incubation, a rounded zone of yeast growth inhibition was formed on the surface of the agar in the Petri dish, the diameter of which with an increase in the duration of plasma exposure to 20 min. was comparable to the diameter of the Petri dish. Also, on the first day of incubation in Petri dishes, the growth inhibition zone fluctuated in the range of 96…100 % of the total surface area of the Petri dishes after 10 and 20 min. of plasma exposure, respectively. In addition, a decrease in the colony size on the Petri dishes treated with a plasma jet was visually observed compared to the control (surface seeding not treated with a plasma jet). However, after 48 h of incubation, the growth inhibition zones in the Petri dishes after exposure to non-thermal plasma were overgrown, regardless of the duration of plasma exposure. After two days of incubation, statistically significant differences in the number of grown colonies of S. cerevisiae were observed compared to the control. The maximum exposure time (20 min.) led to a pronounced statistically significant decrease in the total number of CFU S. cerevisiae relative to the control by 86.6 %. After 10 min. exposure, a delay in the rate of yeast growth and a reliable decrease in the number of grown colonies of S. cerevisiae by 9 % relative to the control were observed.
Ключевые слова: argon plasma, ascomycetes., fungi, microwave plasma, saccharomycetes, yeast cells, аргоновая плазма, аскомицеты., грибы, дрожжевые клетки, сахаромицеты, СВЧ-плазма
Об авторах
Список литературы
1. Ma R., Jiao Z. Inactivation of fungi and fungal toxins by cold plasma // Applications of Cold Plasma in Food Safety. 2022. P.113–166. https://doi.org/10.1007/978-981-16-1827-7_5
2. Воздействия низкотемпературной плазмы на продукты растительного происхождения / С. В. Гомбоева, И. И. Бадмаева, Б. Б. Балданов, Ц. В. Ранжуров, Э. О. Николаев // Техника и технология пищевых производств. 2017. Vol. 46. № 3. 129–134.
3. Baldanov B. B., Ranzhurov T. V., Semenov A. P., Gomboeva S. V. Cold atmospheric argon plasma jet source and its application for bacterial inactivation // Journal of Theoretical and Applied Physics. 2019. Vol. 13. 95–99. https://doi.org/10.1007/s40094-019-0326-3
4. Hoppanová L., Kryštofová S. Nonthermal plasma effects on fungi: Applications, fungal responses, and future perspectives // International Journal of Molecular Sciences. 2022. Vol. 23. № 19. 11592. https://doi.org/10.3390/ijms231911592
5. Veerana M., Yu N., Ketya W., Park G. Application of non-thermal plasma to fungal resources // Journal of Fungi. 2022. Vol. 8. № 2. 102. https://doi.org/10.3390/jof8020102
6. Противогрибковое действие холодной гелиевой плазмы на Candida spp. в экспериментах in vitro / Т. В. Махрова, М. И. Заславская, А. Г. Галка, А. В. Костров // Проблемы медицинской микологии. 2020. Том 22. № 2. 45–49. https://doi.org/10.24412/1999-6780-2020-2-45-49
7. Polčic P., Machala Z. Effects of non-thermal plasma on yeast Saccharomyces cerevisiae // International Journal of Molecular Sciences. 2021. Vol. 22. № 5. 2247. https://doi.org/10.3390/ijms22052247
8. Otsubo Y., Yamashita A., Goto Y., Sakai K., Iida T., Yoshimura S., Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast // Journal of Cell Science. 2023. Vol. 136. № 23. https://doi.org/10.1242/jcs.261292
9. Dubrovin I. A., Emanuel E., Lazra Y., Cahan R. Effects of atmospheric plasma corona discharge on Saccharomyces cerevisiae: Viability, permeability, and morphology // Foods. 2023. Vol. 12. № 2. 381. https://doi.org/10.3390/foods12020381
10. Tarabová B., Tampieri F., Maran E., Marotta E., Ostrihoňová A., Krewing M., Machala Z. Chemical and antimicrobial effects of air non-thermal plasma processing of fresh apple juice with focus on safety aspects. // Foods. 2021. Vol. 10. № 9. 2055. https://doi.org/10.3390/foods10092055
11. Gan Z., Feng X., Hou Y., Sun A., Wang R. Cold plasma jet with dielectric barrier configuration: Investigating its effect on the cell membrane of E. coli and S. cerevisiae and its impact on the quality of chokeberry juice // LWT. 2021. Vol. 136. 110223. https://doi.org/10.1016/j.lwt.2020.110223
12. Wolny-Koładka K., Zdaniewicz M., Bodziacki S., Terebun P., Kwiatkowski M., Zarzeczny D., Pawłat J. Effect of Non-Equilibrium Plasma on Microorganisms Colonizing Diatomaceous Earth after the Beer Filtration Process // Applied Sciences. 2023. Vol.13 № 7. 4081. https://doi.org/10.3390/app13074081
13. Микроволновый источник нетермальной плазмы при атмосферном давлении / С. А. Горбатов, И. А. Иванов, А. В. Тихонов, В. Н. Тихонов, А. Ю. Шестериков // Приборы и техника эксперимента. 2021. № 1. 155–156. https://doi.org/10.31857/S0032816221010110
14. Xu H., Zhu Y., Cui D., Du M., Wang J., Ma R., Jiao Z. Evaluating the roles of OH radicals, H2O2, ORP and pH in the inactivation of yeast cells on a tissue model by surface micro-discharge plasma // Journal of Physics D: Applied Physics. 2019. Vol. 52. № 39. 395201. https://doi.org/10.1088/1361-6463/ab273d
15. Guo J., Huang K., Wang X., Lyu C., Yang N., Li Y., Wang J. Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes // Journal of Food Protection. 2017. Vol. 80. № 2. 225–230. https://doi.org/10.4315/0362-028X.JFP-16-116
16. Ma R., Feng H., Liang Y., Zhang Q., Tian Y., Su B., Zhang J., Fang J. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium // Journal of Physics D: Applied Physics. 2013. Vol. 46. № 28. 285401. https://doi.org/10.1088/0022-3727/46/28/285401
17. Čtvrtečková L., Pichová A., Scholtz V., Khun J., Julák J. Non‐thermal plasma‐induced apoptosis in yeast Saccharomyces cerevisiae // Contributions to Plasma Physics. 2019. Vol. 59. № 8. e201800064. https://doi.org/10.1002/ctpp.201800064
18. Ryu Y. H., Kim Y. H., Lee J. Y., Shim G. B., Uhm H. S., Park G., Choi E. H. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma // PLoS One. 2013. Vol. 8. № 6. e66231. https://doi.org/10.1371/journal.pone.0066231
19. Xu H., Ma R., Zhu Y., Du M., Zhang H., Jiao Z. A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection // Science of the Total Environment. 2020. Vol. 703. 134965. https://doi.org/10.1016/j.scitotenv.2019.134965
20. Chen H., Bai F., Xiu Z. Oxidative stress induced in Saccharomyces cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure. IEEE transactions on plasma science. 2010. Vol. 38. № 8. Р. 1885–1891. https://doi.org/10.1109/TPS.2010.2046755
Для цитирования
Титова Д. И., Харламов В. А., Меджидов И. М. Действие нетермальной аргоновой плазменной струи на дрожжи Saccharomyces cerevisiae // Агронаука. 2025. Том 3. № 1. С. 13–21. EDN: CIOEOP. https://doi.org/10.24412/2949-2211-2025-3-1-13–21